Birational geometry for the covering of a nilpotent orbit closure II
نویسندگان
چکیده
Let O be a nilpotent orbit of complex semisimple Lie algebra g and let π:X→O¯ the finite covering associated with universal O. In previous article [14] we have explicitly constructed Q-factorial terminalization X˜ X when is classical. this count how many non-isomorphic terminalizations has. We construct Poisson deformation over H2(X˜,C) look at action Weyl group W(X) on H2(X˜,C). The main result an explicit geometric description W(X).
منابع مشابه
Birational geometry of symplectic resolutions of nilpotent orbits II
for a parabolic subgroup P ⊂ G. In Part I [Na 2], when g is classical, we have proved that any two symplectic resolutions of Ō are connected by a sequence of Mukai flops of type A or of type D. In this paper (Part II), we shall improve and generalize all arguments in Part I so that the exceptional Lie algebras can be dealt with. We shall replace all arguments of [Na 2] which use flags, by those...
متن کاملBirational geometry and deformations of nilpotent orbits
In order to explain what we want to do in this paper, let us begin with an explicit example. Let O be the nilpotent orbit of sl(4,C) with Jordan type [3, 1] (under the adjoint action of G := SL(4,C)). We will denote by Xi,j,k the cotangent bundle T (G/Pi,j,k) of the projective manifold G/Pi,j,k where Pi,j,k is a parabolic subgroup of G with flag type (i, j, k). Then the closure Ō of O admits th...
متن کاملInduced nilpotent orbits and birational geometry
Let G be a complex simple algebraic group and let g be its Lie algebra. A nilpotent orbit O in g is an orbit of a nilpotent element of g by the adjoint action of G on g. Then O admits a natural symplectic 2-form ω and the nilpotent orbit closure Ō has symplectic singularities in the sense of [Be] and [Na3] (cf. [Pa], [Hi]). In [Ri], Richardson introduced the notion of so-called the Richadson or...
متن کاملBirational geometry of symplectic resolutions of nilpotent orbits
Let G be a complex simple Lie group and let g be its Lie algebra. Then G has the adjoint action on g. The orbit Ox of a nilpotent element x ∈ g is called a nilpotent orbit. A nilpotent orbit Ox admits a non-degenerate closed 2-form ω called the Kostant-Kirillov symplectic form. The closure Ōx of Ox then becomes a symplectic singularity. In other words, the 2-form ω extends to a holomorphic 2-fo...
متن کاملBirational geometry of symplectic resolutions of nilpotent orbits Yoshinori
Let G be a complex simple Lie group and let g be its Lie algebra. Then G has the adjoint action on g. The orbit Ox of a nilpotent element x ∈ g is called a nilpotent orbit. A nilpotent orbit Ox admits a non-degenerate closed 2-form ω called the Kostant-Kirillov symplectic form. The closure Ōx of Ox then becomes a symplectic singularity. In other words, the 2-form ω extends to a holomorphic 2-fo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Algebra
سال: 2022
ISSN: ['1090-266X', '0021-8693']
DOI: https://doi.org/10.1016/j.jalgebra.2022.01.036